Azobenzene–Containing Metal–Organic Framework as an Efficient Heterogeneous Catalyst for Direct Amidation of...

Article in Chemical Communications · October 2015
DOI: 10.1039/C5CC05985B

10 authors, including:

Thanh Truong
Ho Chi Minh City University of Technology (HCMUT) - Vietnam National University
46 PUBLICATIONS 469 CITATIONS

Ha Nguyen
Center for Molecular and Nanoarchitecture (CMNA)
5 PUBLICATIONS 11 CITATIONS

Hong K.D. Nguyen
Hanoi University of Science and Technology
30 PUBLICATIONS 16 CITATIONS

Kyle Cordova
University of California, Berkeley
20 PUBLICATIONS 1,734 CITATIONS

Some of the authors of this publication are also working on these related projects:

Study on the treatment and conversion of fatty sludge waste to new generation of environmental friendly solvent in the industrial applications of paint blending and removing" - Funded by The Ministry of Industry and Trade of Vietnam 2013 View project

"Study on the synthesis and characterization of hydrotalcite catalysts by Synchrotron radiation techniques for the decarboxylation to obtain green hydrocarbons" - Funded by Vietnam National Foundation for Science and Technology Development 2014 View project
An azobenzene-containing metal–organic framework as an efficient heterogeneous catalyst for direct amidation of benzoic acids: synthesis of bioactive compounds†

An azobenzene-containing zirconium metal–organic framework was demonstrated to be an effective heterogeneous catalyst for the direct amidation of benzoic acids in tetrahydrofuran at 70 °C. This finding was applied to the synthesis of several important, representative bioactive compounds.

Reactions involving the formation of amide bonds have attracted much interest due to the pervasiveness of the latter in biologically active compounds, industrially-relevant polymers, and pharmaceutical products.1–3 Methodologies based on reactions of amines with alcohols, aldehydes, nitriles, and aryl halides/CO have been reported, often with poor atom economy and toxic/corrosive by-products.4–6 However, the direct condensation of a carboxylic acid with an amine remains the most desirable pathway as the only side product is water. Due to the high activation barrier of this route, protocols have been developed to employ homogeneous biocatalysts, Lewis acid catalysts based on boron reagents, or metal complexes to successfully form amides from carboxylic acids.4–6 The success of these homogeneous catalysts has led to a push to develop heterogeneous catalysts.7 Lewis acidic heterogeneous systems with respect to the substrate scope.4–10

Metal–organic frameworks (MOFs) are a class of crystalline, porous materials whose architectures can be designed and characterized at the atomic level.11 MOFs are constructed by linking inorganic secondary building units (SBUs) and organic linkers, in which both components can be tailored to suit a particular application.11 As a result of the modular approach to MOF synthesis, these materials have emerged as a class of promising heterogeneous catalysts for organic transformations.12 It is worth noting that low stability towards moisture as well as various harsh chemical environments are often limitations of MOFs in catalysis.11,12 However, MOFs based on Zr6O4(OH)4(CO2)12 clusters are advantageous for such applications as the resulting structures are typically moisture- and chemically-stable and integrate Lewis acidic zirconium sites within the backbone of the architecture.13,14

By taking advantage of the chemically stable SBUs as well as by modifying the linker, we were able to change the stability as well as the reactivity of MOFs toward cross-coupling reactions.15 Herein, we report the synthesis and characterization of a zirconium-based MOF, termed Zr-AzoBDC (where AzoBDC = azobenzene-4,4′-dicarboxylate), and its application as a heterogeneous catalyst for direct amidation reactions. The design strategy was based on the hypothesis that a zirconium-based MOF with an azobenzene backbone would provide large enough pore space for the substrates to react, show better affinity towards reagents, and potentially promote direct coupling through a cooperative effect between the Lewis acidic SBUs and azofunctionalities.14 Indeed, Zr-AzoBDC demonstrated superior catalytic activity for amide formation under significantly milder conditions when compared to other zirconium-based MOFs, common Lewis and Brønsted acids, and other catalytically-active MOFs.

Zr-AzoBDC was solvothermally synthesized using slight modifications to previous reports.16 Specifically, H2-AzoBDC and zirconium oxychloride octahydrate were reacted in N,N-dimethylformamide (DMF) with the addition of acetic acid as a
Zr₆O₄(OH)₄(CO₂)₁₂ SBU with the linear AzoBDC linkers into a primarily observed cuboctahedral-shaped, 12-connected (12-c) isoreticular (having the same topology) MOFs, UiO-66, -67, these diameters are in line with those measured for the ca. 14.8 Å and 16.8 Å, respectively, which are in turn connected by ca. 9.2 Å triangular windows. It is noted that these diameters are in line with those measured for the isoreticular (having the same topology) MOFs, UiO-66, -67, and -68 as well as MOF-806. The potential solvent accessible void, as calculated by PLATON, is 74%. This was supported by N₂ isotherm measurements at 77 K, in which Zr-AzoBDC exhibited significant uptake in the low-pressure region, resulting in calculated Brunauer–Emmett–Teller and Langmuir surface areas of 3200 and 3500 m² g⁻¹, respectively (see Fig. S4, ESI†).

After structural characterization, the catalytic activity of Zr-AzoBDC for amidation reactions was investigated using a model coupling reaction of benzylamine (Bn-NH₂) with benzoic acid. Specifically, optimization of the catalytic activity with respect to solvent, temperature, and catalyst loading was undertaken (see Table S3, ESI†). During this process, molecular sieves were added to the reaction with the realized expectation that lower reaction temperatures would be obtained. Optimal results were obtained in tetrahydrofuran (THF) at 70 °C, with 10 mol% Zr-AzoBDC catalyst loading, when 82% gas chromatography (GC) yield was remarkably achieved (see Table S3, entry 1, ESI†). In particular, the role of solvent was found to play an important role in the reaction efficiency. Notably, in 1,4-dioxane, acetonitrile, and toluene, the model coupling reaction was inefficient with < 20% yield (see Table S3, entries 2–4, ESI†). It was observed that by decreasing the Zr-AzoBDC catalyst loading, the reaction efficiency dropped significantly (see Table S3, entries 1, 5 and 6, ESI†). Catalytic reactions taken place at 60 °C afforded only 50% yield while reactions at increased temperatures (80 °C) produced similar results as the optimal reaction conditions (see Table S3, entries 1, 7 and 8, ESI†). Additionally, the formation of an ammonium carboxylate salt, which retarded the nucleophilic attack by the amine nitrogen atom, was likely responsible for low yields when benzoic acid was used in excess (see Table S3, entries 1 and 10, ESI†). As expected, reactions without the use of a molecular sieve offered <2% and 42% at 70 °C and 110 °C, respectively (see Table S3, entries 11 and 12, ESI†). Previous reports for the amidation of benzoic acid suffered from either harsh conditions, low reaction yields, or stoichiometric amounts of waste by-products derived from coupling reagents. Moreover, the lowest temperature reported for the amidation of benzoic acid, using metal- or borane-based heterogeneous catalysts, is 110 °C. Clearly, Zr-AzoBDC is considerably an improvement upon all of these drawbacks. As expected, only trace amounts of the desired products were observed when reactions were carried out without an added catalyst (see Table S3, entry 9, ESI†).

The suitability of Zr-AzoBDC as an effective heterogeneous catalyst was evaluated by comparative studies on the catalytic activity of two isoreticular Zr-MOFs, UiO-66 and UiO-67, which are built from the same Zr SBU and have the same underlying topology as Zr-AzoBDC. As is shown in Table 1, UiO-66 exhibited no appreciable catalytic activity (entry 2). This observation is attributed to the triangular pore windows (ca. 6 Å) and octahedral pore cavity (ca. 11 Å) being too small to accommodate the substrates within the UiO-66 structure. This points to the likelihood that catalytic amide formation does not occur solely on the surface of Zr-AzoBDC, but rather within the pores. When using UiO-67 as a catalyst, the yield noticeably increases (41% yield), as the adverse pore size effect is minimized (entry 3). However, the activity of UiO-67 remains much lower than that of Zr-AzoBDC. Interestingly, Zr-AzoBDC also exhibited significantly higher activity than previously used amidation catalysts, ZrCl₄ and ZrOCl₂ (entries 4 and 5). Other acid catalysts and catalytically active MOFs were also evaluated as shown in Table 1 (entries 6–15).
In order to highlight the role of the azo functionality in promoting the catalytic activity of Zr-AzoBDC, an amidation control reaction was performed, in which the resulting product is sufficiently small in molecular size (Scheme 1).

As is shown, the varying pore sizes of UiO-66 and UiO-67 did not significantly affect the reactivity. Thus, the high yield obtained with Zr-AzoBDC confirms the positive impact of the azo group on the catalyst activity. This finding was further supported by reactions using the AzoBDC linker and ZrOCl2 metal cluster.

Control experiments, using the model amidation reaction with the corresponding optimized conditions, were subsequently performed to ensure that the catalytic activity did not originate from any leaching of Zr4+ ions from Zr-AzoBDC into the reaction mixture. As expected, there was no conversion detected in the catalyst-free reaction mixture after ZrAzoBDC was removed (see ESI†). In addition, inductively coupled plasma mass spectrometry revealed the concentration of Zr4+ to be <10 ppm in the filtrate (see ESI†). Encouraged by these results, recycling studies were undertaken. At the end of each reaction period (24 h), Zr-AzoBDC was recovered from the reaction mixture, washed with the solvent, and re-used. This process was performed 5 times (see Fig. S13, ESI†). PXRD analysis of Zr-AzoBDC revealed that the crystallinity of this material was retained (see Fig. S14 and S15, ESI†). Clearly, the exceptional catalytic activity of Zr-AzoBDC was maintained without significant degradation.

To assess the substrate scope of the Zr-AzoBDC heterogeneous catalyst, we applied the optimized conditions to a variety of carboxylic acid and amine coupling derivatives. The isolated product yields are presented in Table 2.

Reasonable yields were achieved for acid derivatives with both activating and deactivating substituents at different substituted positions (entries 1–4). The amidation of more reactive acids (i.e. aliphatic carboxylic acids) achieved excellent yields even at 2–5 mol% catalyst loading (entries 5 and 6). Additionally, cross-coupling reactions of benzoic acid with substituted benzylamine derivatives were also investigated. As is shown, desired products were also obtained in relatively high yields (entries 7–10). Finally, the optimized catalytic conditions were extended to the direct amidation of benzoic acid with piperidine, a secondary amine source. The desired product was realized in 48% yield (entry 11), thus, effectively demonstrating the exceptional catalytic activity of Zr-AzoBDC over a wide range of substrates.

The use of homogeneous catalysts in pharmaceutical synthesis often represents a major problem regarding the removal of

<table>
<thead>
<tr>
<th>Entry</th>
<th>Acids</th>
<th>Amines</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeO-Ph-COOH</td>
<td>N-Bn-NH2</td>
<td>Ph-NH3</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>Ph-COOH</td>
<td>N-Bn-NH2</td>
<td>Ph-NH3</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>Ph-COOH</td>
<td>O-N-Bn-NH2</td>
<td>Ph-NH3</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>Ph-COOH</td>
<td>O-4-C(O)-Ph-NH2</td>
<td>Ph-NH3</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>Ph-COOH</td>
<td>N-Bn-NH2</td>
<td>Ph-NH3</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>Ph-COOH</td>
<td>N-Bn-NH2</td>
<td>Ph-NH3</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>Ph-COOH</td>
<td>O-4-C(O)-Ph-NH2</td>
<td>Ph-NH3</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>Ph-COOH</td>
<td>O-4-C(O)-Ph-NH2</td>
<td>Ph-NH3</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>Ph-COOH</td>
<td>O-4-MeO-Ph-NH2</td>
<td>Ph-NH3</td>
<td>68</td>
</tr>
<tr>
<td>10</td>
<td>Ph-COOH</td>
<td>O-4-Cl-Bn-NH2</td>
<td>Ph-NH3</td>
<td>71</td>
</tr>
<tr>
<td>11</td>
<td>Ph-COOH</td>
<td>O-4-Cl-Bn-NH2</td>
<td>Ph-NH3</td>
<td>48</td>
</tr>
</tbody>
</table>

Table 2 Reaction scope with respect to coupling partners†

<table>
<thead>
<tr>
<th>Entry</th>
<th>Type</th>
<th>Catalyst</th>
<th>GC yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zr-MOFs</td>
<td>Zr-AzoBDC</td>
<td>82 (76)</td>
</tr>
<tr>
<td>2</td>
<td>UiO-66</td>
<td>Trace</td>
<td>41 (33)</td>
</tr>
<tr>
<td>4</td>
<td>Zr salts</td>
<td>ZrCl4</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>Other acids</td>
<td>H2-AzoBDC</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>Other acids</td>
<td>Trifluoroacetic acid</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Other acids</td>
<td>TFA</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Other acids</td>
<td>pTSA</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>Other acids</td>
<td>Co-ZIF-67</td>
<td><2</td>
</tr>
<tr>
<td>10</td>
<td>Other acids</td>
<td>Ni2(BDC)3(DABCO)</td>
<td><2</td>
</tr>
<tr>
<td>11</td>
<td>Other acids</td>
<td>Zn-ZIF-8</td>
<td><2</td>
</tr>
<tr>
<td>12</td>
<td>Other MOFs</td>
<td>Cu2(BDC)2(DABCO)</td>
<td><2</td>
</tr>
</tbody>
</table>

α Volume of the solvent, 2 mL; 0.2 mmol scale. Bn-NH2, benzylamine; MS, molecular sieve; TFA, trifluoroacetic acid; pTSA, p-toluenesulfonic acid; ZIF, zeolitic imidazolate framework; BDC, benzene-1,4-dicarboxylate; DABCO, 1,4-diazabicyclo[2.2.2]octane. Numbers in parentheses indicate isolated yields.

* Reaction conditions: carboxylic acid derivatives (1 mmol), amine derivatives (1.5 mmol), catalyst (10 mol%), and activated 4 Å molecular sieves (0.5 g) in dry solvent at 70 °C in a sealed tube under an Ar atmosphere. † Catalyst (5 mol%). ‡ Catalyst (2 mol%).
contaminated metals.23 To further expand on the potential of Zr-AzoBDC to be used in practical applications, we utilized this heterogeneous catalyst in the synthesis of pharmaceutically relevant amides possessing bioactivity (Scheme 2). Specifically, procainamide, an antiarrhythmic agent, was efficiently synthesized from the respective carboxylic acid. Previously, either the protection of the aromatic amine group or a 2-step synthetic process, including amidation of nitroarenes followed by hydrogenation, was required.14 Similarly, paracetamol was obtained directly from acetic acid and 4-aminophenol in 73% yield through utilization of Zr-AzoBDC. Finally, a reasonable yield was achieved in the synthesis of flutamide, an oral and non-steroidal antiandrogen drug mainly used for prostate cancer treatment. It is noted that these drugs were previously synthesized by reacting amines with acid anhydrides or acyl halides.25 One can argue that increased efficiency in such reactions makes the chemical processes more “green” by reducing the amount of steps in the synthetic sequences and in the resulting purification.

In conclusion, we have reported the synthesis of Zr-AzoBDC constructed from an azobenzene-4,4’-dicarboxylate (4-Az) linker and a Zr6O4(OH)4(CO2)12 cluster. This structure exhibited exceptional catalytic activity toward direct amidation of benzoic acids under mild conditions (10 mol% catalyst loading, THF, 70 °C). The heterogeneous nature of Zr-AzoBDC enabled it to be recycled and re-applied to new reactions (5 times) without degradation in catalytic activity. Furthermore, the substrate scope of Zr-AzoBDC was demonstrated to be widely applicable to various substituted carboxylic acid and amine derivatives for the synthesis of bioactive amide compounds.

Vietnam National University – Ho Chi Minh City (VNU-HCM) is acknowledged for financial support via grant no. B2013-20-04. Catalyst synthesis and characterization (at MANAR) were supported by B2011-50-01TD. We thank Dr H. Furukawa, Prof. H. T. Nguyen, Mr T. T. Vu, Ms. A. M. Osborn, and Mr H. Q. Pham for their valuable discussions and assistance. Prof. O. M. Yaghi is gratefully acknowledged for supporting MANAR.

Notes and references