Hydrogen adsorption engineering by intramolecular proton transfer on 2D nanosheets

Hanleem Lee1,2, Sora Bak3,4, Yunhee Cho3,4, Meeree Kim3,4, Se Hwang Kang1,3, Viet Q. Bui3,4, Hung M. Le5, Sung Wng Kim1,3 and Hyoyoung Lee1,3,4

Abstract
Proton transfer has been intensively researched in the catalysis of reactions involving hydrogen, such as the hydrogen evolution reaction (HER), oxygen evolution reaction, and carbon dioxide reduction. Recently, two-dimensional (2D) materials have gained attention as catalysts for these reactions, and their catalytic effect upon changing the size, shape, thickness, and phase has been studied. However, there are no reports on the role of proton transfer in catalysis by 2D materials. Here, a novel way to enhance the catalytic effect of 2D MoS2 was demonstrated via functionalization with four different organic moieties: phenyl–Me, phenyl–OMe, phenyl–OH, and phenyl–COOH groups. The role of proton transfer in 2D catalysis was carefully investigated via electrochemical kinetic analysis and electrical measurement. The best HER performance was observed with proton-donating COOH-functionalized active materials due to intramolecular proton transfer, which shows potential in hydrogen adsorption engineering using proton transfer. In addition, other molecularly functionalized 2D catalysts, including MoTe2 and graphene, also show proton transfer due to the incorporation of organic moieties, providing enhanced HER performance.

Introduction
As the world continues to develop, human activities consume an increasing amount of energy; therefore, devices for alternative energy generation have gained a great amount of interest. In particular, hydrogen has attracted attention as a renewable energy source in photocatalytic systems, environmentally friendly fuel cells, and water-splitting systems. Proton transfer in the catalyst plays an important role in hydrogen-involved systems, including not only the hydrogen evolution reaction (HER) and hydrogen oxidation reaction but also the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Proton transfer influences the kinetics of the HER and the oxygen reduction pathway in the ORR. For that reason, there have been numerous efforts to enhance proton transfer to obtain better catalytic effects in organometallic and solid-state catalysts.

Recently, two-dimensional molybdenum disulfide has been intensively studied as an electrocatalyst. The 1T phase of MoS2 is known to be a better electrocatalyst than the 2H phase of MoS2 because of its faster electron transport. However, the 1T phase of MoS2 is metastable and not thermodynamically stable. This leads to degradation or phase transition of the catalyst during the HER. Therefore, a novel form of MoS2 with both high stability and high catalytic performance, which are conflicting properties, is needed. In a recent study, Chhowalla’s group developed a new pathway to enhance the catalytic effect of MoS2 by lowering the contact resistance, rather than modulating the surface area or the intrinsic conductivity. Regardless of the type of phase or the number of edge sites, the catalytic effect of MoS2 is strongly
dependent on the conductivity between the electrode material and the catalyst because of their 2D characteristics, which is referred to as contact resistance. For example, 2H-MoS2 in contact with a Au electrode through the 1T-MoS2 (so-called metallic MoS2) edge demonstrates enhanced HER performance similar to that of metallic MoS2. However, fundamental studies investigating how the catalytic effect of transition metal dichalcogenide (TMD) materials is different from that of metal catalysts, especially in terms of exploiting the 2D characteristic of the materials, are lacking. Because 2D materials follow quantum physics or quantum chemistry, they have extraordinary intrinsic properties different from those of bulk materials. Previously, MoS2 nanosheets functionalized with certain organic molecules have been demonstrated to facilitate HER activity using the chemistry-sensitive physical properties of 2D materials. Some researchers insist that dopants enhance the carrier concentration, which can generate a new state or increase the carrier density near the Fermi level. Others suggest that the band state shifts to near the Fermi level, which can generate a new state or increase the carrier density near the Fermi level. Thus, it is necessary to clarify the mechanism of HER activity for functionalized MoS2 as well as to develop technical breakthroughs in 2D catalysis.

In this study, we focus on the enhanced catalytic effect of functionalized MoS2 with an emphasis on the proton transfer mechanism. To minimize the complexity of the factors influencing the catalytic effect, we initially investigate the fundamental catalytic effect of functionalized MoS2 depending on the size, number of layers, and doping. Then, the catalytic enhancement of functionalized MoS2 through intramolecular proton transfer, particularly in the HER, is introduced. The functionalization of 2D materials is one of the easiest ways to develop new functionality in TMD materials while maintaining the original intrinsic properties (e.g., electrical behavior). To introduce various new organic molecular functionalities, para-substituted benzene diazonium salts, which are able to incorporate various substituents, were chosen to modify MoS2. Interestingly, carboxyl (COOH)-functionalized MoS2 shows a lower Tafel slope of approximately 56 mV per decade, which is associated with a change in the rate-determining step from adsorption to desorption. This is because the COOH moiety increases the polarization of the electrode, which is related to wettability, as well as reduces the hydrogen absorption energy of the Mo and S atoms through proton transfer, thus converting low-activity Mo or S to high-activity Mo or S for the HER.

Experimental procedure

Thin-film working electrode

PET substrates were cleaned with warm isopropyl alcohol, and O2 plasma treatment was subsequently performed. PDMS mixtures (silicone elastomer base:silicone curing agent = 10:1 volume ratio) were spin-coated at 500 rpm for 30 s, 3000 rpm for 12 s, 5000 rpm for 10 s, and 300 rpm for 5 s onto the PET substrates after standing for 30 min and were then cured at 90 °C overnight. Next, 50 nm of Au was deposited on PDMS/PET as the conductor electrode. A f-MoS2 solution was prepared based on a previous paper. Details of the preparation of f-MoS2 and e-MoS2 are given in the Supporting Information. Then, 2 mg/ml of f-MoS2 was diluted with triple-distilled water to engineer the surface energy between the droplet and the substrate during coating. The solvent (DMF:H2O) ratio was adjusted to 1:1 in the final f-MoS2 suspension, resulting in a 1 mg/ml concentration. Then, f-MoS2 was spray-coated onto the Au/PDMS substrate. The e-MoS2 electrode was prepared using the same procedure as that for f-MoS2.

Measurement of the electrochemical and other physical properties

A 920 C SECM (CH Instruments, TX, USA) was used for the electrochemical measurement. The working electrode was placed between a Pt wire counter electrode and a Ag/AgCl (saturated KCl) reference electrode. All potentials given in this work were calculated against the Ag/AgCl reference electrode (0.197 eV). All electrochemical measurements were performed in 0.5 M H2SO4 aqueous solution with H2 purging, except during the pH test. pH measurements were conducted in phosphate buffer solution using H2SO4 to adjust to the desired pH. Raman spectroscopy (inVia™ confocal Raman microscope, Renishaw), XPS (ESCA 2000, VG Microtech, Netherlands), and AFM (SPA 3800, Seiko, Japan) were used for surface characterization.

Measurement of the electrical properties

The source–drain current versus voltage was measured by a 4200 Keithley semiconductor characterization system at room temperature in a vacuum of 1 × 10⁻⁴ – 1 × 10⁻⁵ torr. The film was fabricated by the spin-coating method on a 50 nm Au electrode on a SiO2/Si substrate. The width of the source and drain electrodes was 50 µm, and the length of the channel was 100 µm.
Results

Fundamental factors in the catalysis of 2D materials

Figure S1 presents a schematic illustration of the experimental process used to fabricate functionalized MoS₂. To exclude other factors that might affect the catalytic effect of TMD materials, we first determined the HER performance with different doping levels and different thicknesses. We fabricated a film-type HER working electrode with a uniform morphology as the catalyst. Au is used as both a conductor to allow for electron transfer in the film-type working electrode and as a p-type dopant in MoS₂ to shift the conduction band (CB) of MoS₂ toward the hydrogen reduction potential; this is done because the work function of Au and the valence band of MoS₂ have similar band levels ($\phi_{\text{Au}} = 5.2$ eV, $\text{VB} = 5.4$ eV). Unlike bulk TMD materials, the electronic structure of nano-dimensional TMDs has been reported to have a strong relationship with the substrate due to the screening effect. Although Au nanoparticles themselves have a good catalytic effect on the HER, we suggest that the HER performance predominately originates from MoS₂ because the electrode is fully covered with MoS₂ (in our system, some MoS₂ experiments present a lower catalytic effect than the Au electrode). The polarization curves of the current density–potential characteristics show differences for different doping levels and number of layers. The reduced onset potential with an increased doping level is due to the band state modulation, which was confirmed by core-band and valence-band X-ray photoelectron spectroscopy (XPS). Edge functionalization of MoS₂ (e-MoS₂) with different doping levels was explored in our previous research, so we followed the procedure described in that paper. We named the sample monolayer C_x-e-MoS₂, where C_x represents the number of alkyl chains of the alkyl amine, which plays an important role in controlling the reactivity of diazotization for edge functionalization. In particular, an alkyl amine with a longer chain effectively extends the d-spacing of MoS₂ and changes the polarizability of MoS₂, leading to a higher edge doping level (Figure S4). Figure S2b shows that the Fermi level proportionally downshifts in the order of monolayer C_2-e-MoS₂ < monolayer C_4-e-MoS₂ < monolayer C_{10}-e-MoS₂ due to the higher edge doping levels, which are 0.084 eV for f(COOH)–MoS₂, 0.93 eV for C_{10}-e-MoS₂, 1.79 eV for C_4-e-MoS₂, and 1.67 eV for C_2-e-MoS₂. Fully functionalized f(COOH)–MoS₂ using the same diazonium salt dopant was also investigated as a control. Through p-type doping of COOH, the CB of the edge-functionalized MoS₂ approaches the hydrogen reduction potential and provides an improved catalytic effect. 2H-MoS₂ was made by a solvent exfoliation method, and this material dominantly conforms to a multilayer structure. The onset of the HER activity of 2H-MoS₂ was near -220 mV vs. the reversible hydrogen electrode (RHE), and the onset shifts to a lower overpotential as the edge functionalization region increases ($E_{\text{onset}}^{\text{C}_2} = 191$ mV, $E_{\text{onset}}^{\text{C}_4} = 175$ mV, $E_{\text{onset}}^{\text{C}_{10}} = 152$ mV) with a monolayer of e-MoS₂ (Figure 1). The thickness also affects the onset potential by changing the effective surface area and the band state. The number of layers depends on the purification process and can be directly investigated by the difference in the E_{2g} and A_{1g} peaks in the Raman spectrum (Figure S2a). Multilayer e-MoS₂ produced by C_2, C_4, and C_{10} does not exhibit a good linear tendency like monolayer C_x-e-MoS₂, but its onset potential is lower than that of 2H-MoS₂ and slightly higher than that of monolayer e-MoS₂ (approximately 210 mV, Fig. 1b). We speculate that the increased edge exposure in the monolayer samples leads to thermodynamically favorable electrocatalytic activity, and their narrower distribution of electronic properties demonstrates the clearly enhanced HER upon doping over that of multilayer samples. Thus, we fabricated working electrodes using functionalized monolayer MoS₂ (f-MoS₂) with similar doping levels, as confirmed by AFM (Figure S9–10).
Then, we estimated the catalytic activity depending on the doping position, where e-MoS2 represents monolayer C10_e-MoS2. The e-MoS2 demonstrates a dramatically improved exchange current and onset potential (230 mV vs. RHE for 10 mA/cm²) compared to 2H-MoS2 (310 mV vs. RHE for 10 mA/cm²) or the Au electrode (265 mV vs. RHE for 10 mA/cm²), as shown in Fig. 2. This means that H adsorption at the COOH doping site is closer to equilibrium than it is at the common edge site. Full functionalization of MoS2 (functionalization on both the basal plane and edge site, f-MoS2) further enhances the HER performance because new active sites, such as defects and functional groups, are generated. As a result, f(COOH)–MoS2 shows the smallest onset and largest exchange current, which are even higher than those of metallic MoS2 (n-MoS2), although the intrinsic resistance of f(COOH)–MoS2 is higher than that of n-MoS2 (Fig. 3c).

In addition, f(COOH)–MoS2 is more stable than n-MoS2 (Figure S3), which is believed to originate from the functional groups stabilizing the defect sites of MoS2. The XPS spectra in Figure S5 show that the 2H/1T ratio estimated at the Mo 3d 3/2 orbital before and after HER test is not significantly different for f(COOH)–MoS2 (from 3.01 to 2.97), but a large change is observed for n-MoS2 (from 0.97 to 1.24). In addition, after 1000 HER cycles, n-MoS2 exhibits a large proportion of the Mo6+ state at 234 eV and 236 eV, which is the oxidized form of Mo. Amazingly, no such states are observed in f(COOH)–MoS2 after 1000 HER cycles because the COOH sites, surrounded by defects or neighboring layers, bring structural stability to the system.

Molecularly functionalized ligand effect

To determine the factors that enhance the catalytic effect of f-MoS2, we synthesized four different f-MoS2 sheets with four different functional groups: phenyl–COOH, phenyl–CH3(ME), phenyl–OCH3(OME), and phenyl–OH. Two of these are p-type dopants (phenyl–COOH and phenyl–ME), and two are n-type dopants (phenyl–OME and phenyl–OH). Their functionalization with MoS2 was confirmed by IR and Raman spectroscopy (Figure S6–S7). Peaks corresponding to aromatic C=C bonds are observed at approximately 1400 and 1600 cm⁻¹, and a S–C bonding peak is observed at 680 cm⁻¹ for all four f-MoS2 samples, representing functionalization at the S site. Additionally, the peaks are slightly shifted, indicating the influence of the chemisorbed functional groups. Band modulation can also be verified by investigating the Raman shifts. Due to the different band state positions corresponding to the E₂g and A₁g vibrational modes of bare MoS₂, f-MoS₂ demonstrates different types of band shifts. The OME and OH groups, which are strong electron-donating functional groups, show a redshift because of the upshift of the band state. Alternatively, COOH is a weak electron-donating functional group, and ME is a strong electron-withdrawing group, which produce a blueshift because of the downshift of the band state. The PL and PLE spectra agree with these results as well as the different band state changes depending on the organic dopant (Figure S8). Interestingly, independent of the band modulation, functional groups with a weak hydrogen binding energy (e.g., COOH and OH groups) enhanced the HER performance. f(COOH)–MoS₂, f(OH)–MoS₂, f(ME)–MoS₂, and f(OME)–MoS₂ show an onset of HER activity near −101, −105, −147, and −142 mV vs. RHE, respectively, as can be observed in Fig. 4a. The onset of the catalytic activity shifts to a lower overpotential when the binding energy of hydrogen in the functional groups decreases, which is related to the proton transfer behavior (i.e., the ligand effect).

First, we compared the conductivity of the various functionalized samples because the conductivity is known to increase the catalytic effect of f-MoS2. Interestingly, the polarization curves of f-MoS2 indicate good performance when only a small amount of f-MoS2 is deposited (Fig. 3a). This indicates that the characteristics of the 2D material (e.g., functional group, proton transfer, wettability and...
band state), rather than the conductivity change, strongly affect the HER performance of the 2D material when the thickness of the catalyst film on the electrode is less than ten nanometers. Electrons ejected from the electrode can move along a several-nanometer-thick film through the tunneling effect or hopping transport, but cannot with a thick film. As a result, a thin film of f-MoS2 catalyst shows good HER performance and high current despite the low conductivity of the material, while a thick f-MoS2 layer demonstrates a sharp decline in the HER performance due to the strong influence of conductivity. The $I-V$ curves support these results (Fig. 3c, d). The in-plane conductivity of all four f-MoS2 samples, which is related to the intrinsic conductivity, shows a small increase over that of 2H-MoS2 (Fig. 3c). However, the in-plane conductivities of the f-MoS2 samples did not change significantly, and all samples show semiconductor behavior: the metallic n-MoS2 shows a current level of 10^{-6} that leads to 5×10^6 ohm and f-MoS2 demonstrates a current level of 10^{-9} that leads to approximately 10^9 ohm. This is because f-MoS2 still exhibits semiconductor behavior, unlike metallic MoS2, leading to the semi-circle impedance plot and a large electron transport impedance for the thick film (Fig. 3b). On the other hand, the I–V curves of vertical devices of all four f-MoS2 ($t < 10$ nm) samples reveal a current level of 10^{-4}, which is similar to that of metallic n-MoS2 and 2H-MoS2 ($t < 10$ nm, Fig. 3d). We measured the out-of-plane conductivity of the three f(COOH)–MoS2 samples, and even though the out-of-plane conductivity is different among the samples (0.2 mA), their onset potentials are similar (± 10 mV), as shown in Figure S11. Thus, the out-of-plane conductivity of f-MoS2 does not have a dominant effect on the HER performance for the several-nanometer catalyst film, meaning the different onset potential and current density of the HER performance, depending on the organic functional group, was not derived from the conductivity but from the ligand effect (band state modulation and proton transfer).
In addition, the ligand effect can be interpreted through investigation of the kinetics. The rate-determining step in the 2H-MoS₂ HER reaction is the adsorption of hydrogen, rather than the desorption, and so proper bonding with H at an active site kinetically enhances the electrocatalytic activity\(^30\). In our experiment, e-MoS₂ shows a lower Tafel slope but a higher onset potential than f-MoS₂ (Fig. 2b). This is because f-MoS₂ shows thermodynamically improved catalytic activity due to the large number of effective active sites and defects near the functionalized organic moiety, even though e-MoS₂ shows kinetically improved catalytic activity\(^31\). The kinetically improved catalytic activity of e-MoS₂, compared to f-MoS₂, is caused by the higher activity of the edges of the functionalized MoS₂ due to the lower H binding energy compared to that of the functionalized basal plane, as supported by our discrete Fourier transform (DFT) calculations (Fig. 5). The various functionalized MoS₂ nanosheets provide different electrocatalytic activities. The f(COOH)–MoS₂ nanosheets exhibit the lowest overpotential and lowest Tafel slope, while f(OH)–MoS₂ displays low overpotential and high Tafel slope. The f(ME)–MoS₂ and f(OME)–MoS₂ samples show high overpotential and high Tafel slope. Moreover, f(OH)–MoS₂ exhibits electrocatalytic losses in the J–V curve after 1000 HER cycles because of the structural instability of the functional groups after the hydrogen shift (Fig. 4b). In contrast, f(COOH)–MoS₂ does not show significant changes. Unlike the HER performance of 2H-MoS₂ which follows the adsorption-dependent Volmer–Tafel mechanism, f(COOH)–MoS₂ is considered to follow the desorption-dependent Volmer–Heyrovsky or Volmer–Tafel–Heyrovsky mechanism, which agrees with the values of the Tafel slope (approximately 56 mV per decade)\(^32\) shown in Fig. 4a. The other functional groups of f(OH)–MoS₂, f(ME)–MoS₂, and f(OME)–MoS₂ do not follow desorption-dependent behavior. The Tafel slopes for f(OH)–MoS₂, f(ME)–MoS₂, and f(OME)–MoS₂ are 89, 98, and 121 mV per decade, respectively (inset of Fig. 4a). The exchange current density, shown in Fig. 6a, of f(COOH)–MoS₂ and f(OH)–MoS₂ is dramatically enhanced over that of f(ME)–MoS₂ and f(OME)–MoS₂, showing a similar trend as that of the overpotential. As mentioned previously, the larger number of effective active sites directly leads to a reduction in the overpotential of all four f-MoS₂ compared to 2H-MoS₂. We then asked why OH and COOH substituents produce a larger number of effective active sites than ME or OME. Wettability, or the polarizability of the electrode, is the dominant reason. The wettabilities of f(COOH)–MoS₂, f(OH)–MoS₂, f(ME)–MoS₂, and f(OME)–MoS₂ were investigated via changes in their electrical properties (Fig. 7c). f(COOH)–MoS₂ and f(OH)–MoS₂ show large current suppression at a negative bias voltage, while f(COOH)–MoS₂ presents a significantly low current at a positive bias voltage. The current drop is associated with the strong interaction between water molecules and the functionalized MoS₂. When the wettability of the functionalized MoS₂ increases, the current drop also increases due to the high degree of scattering induced by water molecules.

Consequently, f(COOH)–MoS₂ and f(OH)–MoS₂ show high wettability with water, which is beneficial for the HER reaction. Furthermore, pH-dependent LSV curves were measured to provide evidence of the ligand effect on MoS₂ (Fig. 6b). The onset potential and exchange current are dramatically affected by the pH of the solution\(^16\) according to the Nernst Equation, but this tendency is not accurately followed when the electrode has poor polarizability. Thus, an electrode with good wettability exhibits a shift in the reaction potential of approximately 57 mV with a pH increase of 1. In our experiment, f(OH)–MoS₂ shows a lower activity shift (0.201 V) in both the exchange current and the onset potential, even though f(COOH)–MoS₂ demonstrates a higher activity shift (depending on the pH, 0.252 V), and the degree of the
Fig. 5 DFT calculations:

a Comparison of ΔG_H at various H bonding sites (Mo atom, S atom, and S edge) on monolayer 2H–MoS$_2$, multilayer 2H–MoS$_2$, and f(COOH)–MoS$_2$.

b Comparison of ΔG_H at various H bonding sites for MoS$_2$ samples functionalized with COOH (red), OH (purple), ME (gray), and OME (green).

Fig. 6 Kinetic analysis:

a Exchange current of molecularly functionalized MoS$_2$.

b Voltammograms of COOH-functionalized MoS$_2$ in phosphate buffer with the pH adjusted to 2, 3, 4, 5, 6, and 7 by H$_2$SO$_4$ (black) and voltammograms of OH-functionalized MoS$_2$ in phosphate buffer with the pH adjusted to 2, 4, 5, and 7 by H$_2$SO$_4$ (red).

c C–V characteristics of f(COOH)–MoS$_2$ at different scan rates. The inset denotes the C–V characteristics of f(ME)–MoS$_2$ at different scan rates.

d C–V characteristics of 2H-MoS$_2$, f(COOH)–MoS$_2$, and 1T MoS$_2$.

Lee et al. NPG Asia Materials _#####_ Page 7 of 14
activity shift from pH 2 to pH 7 is much closer to the theoretical value (0.28 V). However, the different pH dependencies of the catalytic effect are larger than expected since f(OH)–MoS2 shows comparable wettability. We believe that the carboxyl moiety serves as a proton shuttle in our system, which leads to the significant enhancement in the HER performance.

\[
\begin{align*}
 \text{HOOC} - \text{S} - \text{Mo}^{4+} - \text{vacancy} & \leftrightarrow \text{OOC} - \text{S} - \text{Mo}^{4+} - \text{H} \quad (1) \\
 \text{HOOC} - \text{S} - \text{Mo}^{4+} - \text{H} & \rightarrow \text{HOOC} - \text{S} - \text{Mo}^{4+} - \text{H}_2 \\
 & \rightarrow \text{HOOC} - \text{S} - \text{Mo}^{4+} - \text{vacancy} + \text{H}_2 \\
 \text{HOOC} - \text{S} - \text{Mo} - \text{S} & \leftrightarrow \text{OOC} - \text{S} - \text{Mo} - \text{SH} \quad (2) \\
 \text{HOOC} - \text{S} - \text{Mo} - \text{SH} & \leftrightarrow \text{OOC} - \text{S} - \text{Mo} - \text{S} - \text{H}_2 \\
 & \rightarrow \text{HOOC} - \text{S} - \text{Mo} - \text{S} + \text{H}_2
\end{align*}
\]

The basic mechanism of the HER with f(COOH)–MoS2 is similar to that of common MoS2 using a vacancy site as the active site. The main difference is that intramolecular proton transfer facilitates hydrogen adsorption.16 Rapid intramolecular proton transfer from the carboxyl compensates for the activity of hydrogen adsorption and desorption through the above four pathways. In particular, the first hydrogen adsorption is caused by intramolecular proton transfer from the organic COOH functional group. The high electronegativity of the metal atom affects the organic moiety so that a proton on the organic COOH substitute is shifted toward the metal component at a vacancy site or a sulfide atom. Intramolecular proton transfer eventually lowers the H adsorption energy and facilitates hydrogen gas evolution. Thus, the H dissociation energy of the functional group emerges as an indicator for possible intramolecular proton transfer. Because H dissociation from the organic moiety is affected by the pH, the pH of the solution has a strong effect on the intramolecular proton transfer. In that manner, the LSV curves of f(COOH)–MoS2 show a relatively high overpotential shift and current density shift, especially in
intramolecular proton transfer is involved in the HER of Vienna Ab-initio Simulation Package.37,38 The interactions between the atomic cores and the electrons were higher capacitance than 2H-MoS\textsubscript{2} and a lower capacitance is better for hydrogen desorption in desorption-dependent HER. While a low capacitance is better for hydrogen desorption in desorption-dependent HER.

DFT calculation

All calculations were performed via DFT35,36 using the Vienna Ab-initio Simulation Package.37,38 The interactions between the atomic cores and the electrons were described using the projector augmented wave method.39 The generalized gradient approximation in the Perdew–Burke–Ernzerhof (PBE)40 form was used as the electron exchange-correlation functional, along with the van der Waals correction at the Grimme-D3 level.41 The wavefunctions were expanded using plane waves with a cutoff energy of 400 eV, the force convergence criterion was set to 0.01 eV/Å, and the total energy was smaller than 0.0001 eV/cell. The (4 × 4 × 1) supercell and (3 × 3) ribbon of MoS\textsubscript{2} were chosen to consider basal plane and edge ligand functionalization on the 2H–MoS\textsubscript{2} and 1T–MoS\textsubscript{2} surfaces, respectively. A k-point grid was employed for periodic and slab-periodic calculations of sizes (6 × 6 × 1) and (6 × 1 × 1), respectively. A vacuum region of 17 Å was used to avoid interactions between two periodic images.

To analyze the favorability of H bonding to the functionalized MoS\textsubscript{2} surface, we calculated the Gibbs free energy of the reaction using the following formula:

\[
\Delta G_{H} = \Delta E_{H} + \Delta E_{ZPE} - T \Delta S_{H}
\]

(5)

In the above equation, \(\Delta E_{H}\) (binding energy of H attachment) is calculated by taking the total energy of the product side (functionalized MoS\textsubscript{2} with H) and subtracting the total energies of the reactants (functionalized MoS\textsubscript{2} layer and \(1/2\text{H}_{2}\)). The difference in the zero-point vibrational energies of the product and reactant sides (\(\Delta E_{ZPE}\)) is insignificant (~0.06 eV); \(\Delta S_{H}\) is approximately half of the entropy of H\textsubscript{2} gas, and \(T\) was chosen as 300 K (the contribution is approximately 0.2 eV). As a result, we can simplify Eq. (5) by adding 0.26 eV to \(\Delta E_{H}\).42,43 We first analyzed the attachment of H to the S site in a pure MoS\textsubscript{2} surface. For monolayer 2H–MoS\textsubscript{2}, \(\Delta G_{H}\) is reported to be 2.13 eV, which indicates that H attachment on 2H–MoS\textsubscript{2} is non-spontaneous. In addition, we also considered the attachment of H to the multilayer 2H–MoS\textsubscript{2} system, and the obtained \(\Delta G_{H}\) is 2.15 eV, which is slightly higher than the previous case. For convenience, we summarize all \(\Delta G_{H}\) terms investigated in this study in Fig. 5 and Table S1. The results demonstrate the same trends as found with our HER reaction experiments; multilayer MoS\textsubscript{2} has a higher hydrogen evolution energy than monolayer MoS\textsubscript{2}, and basal plane functionalization gives a higher hydrogen evolution energy than edge functionalization. In particular, the edge sulfurs undergo a desorption-dependent hydrogen evolution mechanism, unlike sulfurs in the basal plane, which follow an absorption-dependent hydrogen evolution mechanism. In the next stage, we considered H attachment on 2H–MoS\textsubscript{2} layers functionalized with various groups (phenyl–COOH, phenyl–ME, phenyl–OME, and phenyl–OH). There are two possible attachment positions for H near the functionalized site, i.e., H can directly bind to the vacant Mo site or the neighboring S site, as indicated in Figure S13. To clarify the binding mechanism, we analyzed the Gibbs free energy of H attachment for both binding positions with respect to each functional group. For the Mo–H bond to be established, the required \(\Delta G_{H}\) falls in the range of 2.31–2.34 eV (see Table 1 for details of each case), which is higher than that for H attachment to the S site in pure MoS\textsubscript{2}. Such results can be understood in terms of thermodynamic stability because it is difficult for H to approach the inner Mo cation. On the other hand, bond formation between H and one neighboring S anion near the functionalized site is shown to be more favorable due to the lower positive \(\Delta G_{H}\) values (1.12–1.19 eV). Among the four cases, our results indicate that S–H bond formation in the phenyl–COOH and phenyl–ME functionalized samples gives the lowest positive \(\Delta G_{H}\) value (1.13 and 1.12 eV, respectively). Subsequently, we considered H attachment on the functionalized 1T phase with a change in the original phase to the 1T phase. As indicated in Table 1, H still prefers to form bonds with the S atoms (the \(\Delta G_{H}\) quantities are lower than those for the Mo–H bond). It is observed that –COOH functionalization provides the lowest \(\Delta G_{H}\) for Mo–H binding (0.44 eV), and a similar \(\Delta G_{H}\) is observed for S–H binding (0.41 eV) with regard to other ligand functionalization cases, resulting in a low onset potential and low Tafel slope. Through analysis of the \(\Delta G_{H}\) values, we can arrive
at an important conclusion: H prefers establishing bonds with S sites neighboring the functionalized position. This result for ΔG_{H} is consistent with our electronic structure analysis, in which we examined the resultant band structures of the four functionalized systems (see Fig. 8). In Fig. 8, we can clearly observe that the attachment of functional groups on the 2H-MoS$_2$ surface results in similar electronic band structures. When we compare these band structures to those of pure 2H-MoS$_2$, we observe a significant modification: there is an in-gap state at the Fermi level, which is shifted to the bottom of the CB. During functionalization of the 1T-phase, the electronic band structures reveal electron conducting behavior as well as three additional energy levels in the CB region caused by the functional group (see Fig. 9). Overall, we can observe that the band structures of the four 1T-MoS$_2$ cases are similar, meaning that the band state is not the main reason for the differences in the HER behaviors of the four different functionalized MoS$_2$ samples.

To understand the ligand effect, we investigated the adsorption of one/two water molecules on each of the functionalized MoS$_2$ surfaces. In the structural optimizations, the water molecules were placed approximately 2.23–2.36 Å from the S layer. Subsequently, the adsorption energies of the water were calculated as the total energy difference between the product and reactant sides. According to the results in Table 1, water does not preferentially adsorb on the 2H-MoS$_2$ surface via
phenyl–COOH functionalization. In the other three 2H–MoS2 samples, we observe that H2O can establish weak van der Waals interactions with the S atoms on the surface, with adsorption energies of ~0.21 to ~0.02 eV. For the 1T-MoS2 phase, phenyl-ME functionalization is repulsive to water. Interestingly, phenyl–COOH functionalization is quite repulsive to one water molecule (0.01 eV) but attractive to two water molecules (~0.11 eV). From the overall calculation, we determine that the best performance of COOH-functionalized MoS2 is produced by a combination of effects, such as the various ΔGf quantities, number of active sites, and wettability values.

Discussion
To clearly investigate the effects of wettability and intramolecular proton transfer, we conducted in situ HER measurements on a Au electrode with a self-assembled monolayer composed of organic molecules. If the organic molecules do not participate in HER, a current drop will occur in a similar bias voltage range because the Au electrode is passivated by the organic molecules and the organic molecules cannot change the Fermi level of Au. The ME and OME self-assembled Au electrodes present an upshift in the reaction potential, while the OH and COOH self-assembled Au electrodes demonstrate a downshift in the reaction potential to even lower than that of the bare Au electrode (Fig. 7b). This suggests that the COOH and OH self-assembled Au electrodes not only increase the polarizability of the electrode but also affect the Gibbs free energy of the intermediate state during the HER. The reduction potential of the reaction decreases as the density of the organic molecules increases, facilitating the HER performance (Fig. 7a). To understand the separate effects of wettability and intramolecular proton transfer, we also conducted HER measurements with NO2 and NH2 self-assembled layers (Fig. 7d). Both of the surfaces with NO2 and NH2 functional groups are highly hydrophilic, but no intramolecular proton transfer occurs. As we know, the NO2 group has no H molecules but has a large polarity. Hence, the NH2 group has very high H dissociation energy and low polarity. Both of the organic self-assembled layers demonstrate a much higher reaction potential than the COOH-assembled and OH-assembled Au or even bare Au, which means that intramolecular proton transfer occurs in the COOH and OH functional groups during the HER. As a result, the electrochemistry of the HER in our system avoids energy-wasting reactions while coupling the proton-accepting or proton-donating groups in the MoS2 catalyst

Finally, we examined the HER performance of other important catalysts, including molecularly functionalized MoTe2 and graphene. The polarization curves of the current density-potential characteristics suggest that the HER activities of molecularly functionalized MoTe2 (f(COOH)–MoTe2) and graphene (f(COOH)–CVDg) are enhanced (Fig. 10a). The onset potential of f(COOH)–MoTe2 is reduced from 115 to 79 mV. The Tafel slope also decreases from 150 mV per decade to 118 mV per decade. In addition, the catalytic activity of f(COOH)–CVDg is improved. CVD graphene does not show a significant catalytic effect without any modification; however, f(COOH)–CVDg shows a good overpotential of approximately 82 mV and a Tafel slope of approximately 95 mV per decade (Fig. 10b). Even without any metal components or Au conductor, the molecularly functionalized graphene electrode shows a good onset potential (100 mV). This is the best onset potential without any metal incorporation or metal conductor (Fig. 11 and S14). As a result, we can conclude that the f(COOH)–CVDg electrode facilitates the HER catalytic effect with a help of intramolecular proton transfer in the functionalized organic molecules. Unlike the HER performance for MoS2, relatively high Tafel slopes are observed for both functionalized MoTe2 and graphene. However, we do not know the exact reason why the Tafel slopes of f(COOH)–CVDg and f(COOH)–MoTe2 are higher than that of f-MoS2; more experimental optimization and research are needed in the future.

In this study, we suggest a new pathway to enhance the electrocatalytic effect of 2D materials with four different functional molecules, including phenyl–Me,
phenyl–OMe, phenyl–OH, and phenyl–COOH. The acidic molecular functionalization of MoS2 materials not only reduces the onset potential and Tafel slope but also increases the device stability during the HER. Without any metal components, highly efficient catalytic effects were demonstrated. These effects are caused by an increase in the carrier density near the Fermi level and represent a new pathway to engineer both the hydrogen adsorption and desorption energy. Moreover, the phenyl–COOH functional group improves the HER catalytic effect of MoTe2, which is another TMD material. In addition, f(COOH)–CVDg, which is another 2D carbon material without metal incorporation, produces a high-performance HER electrode. The best HER performance of the COOH-functionalized active materials is attributed to both the higher carrier concentration and the lower H desorption energy driven by intramolecular proton transfer. In our study, it was shown that 2D nanosheets with organic molecular functional groups experience different chemistries than the corresponding bulk or surface chemistry, thus, the catalytic effect of TMD materials should be studied because the quantum chemical modulation of 2D TMD materials has yet to be researched in detail, despite their large potential in various bulk devices. Our results encourage new strategies for the chemical, electronic, and electrochemical modulation of 2D materials. The methodology developed in this study can be applied to other types of nano-dimensional materials in addition to 2D materials.

Acknowledgements
This work was supported by IBS-R011-D1. This work was supported by the Postdoctoral Research Program of Sungkyunkwan University (2017).

Author details
1Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea. 2Department of Engineering, Cambridge Graphene Center, University of Cambridge, Cambridge CB3 0FA, UK. 3Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746, Korea. 4Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea. 5Center for Innovative Materials and Architectures (INOMAR), Vietnam National University-Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 721337 Vietnam, USA

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information is available for this paper at https://doi.org/10.1038/s41427-018-0037-2.

Received: 20 October 2017 Revised: 7 February 2018 Accepted: 12 February 2018
Published online: 24 May 2018

References

